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Abstract
For the purpose of a nonlocality test, we propose a general correlation
observable of two parties by utilizing local d-outcome measurements with
SU(d) transformations and classical communications. Generic symmetries
of the SU(d) transformations and correlation observables are found for the
test of nonlocality. It is shown that these symmetries dramatically reduce
the number of numerical variables, which is important for numerical analysis
of nonlocality. A linear combination of the correlation observables, which is
reduced to the Clauser–Horne–Shimony-Holt (CHSH) Bell’s inequality for two
outcome measurements, leads to the Collins–Gisin–Linden–Massar–Popescu
(CGLMP) nonlocality test for d-outcome measurement. As a system to be
tested for its nonlocality, we investigate a continuous-variable (CV) entangled
state with d measurement outcomes. It allows the comparison of nonlocality
based on different numbers of measurement outcomes on one physical system.
In our example of the CV state, we find that a pure entangled state of any
degree violates Bell’s inequality for d(� 2) measurement outcomes when the
observables are of SU(d) transformations.

PACS numbers: 03.65.Ud, 03.65.Ta, 03.67.−a, 42.50.−p

1. Introduction

Nonlocality is one of the most profound aspects of a quantum mechanical system and it is a
fundamental resource for quantum information processing. Nonlocality has been studied
commonly in the operational perspective based on Bell’s inequalities for bipartite two-
dimensional systems with dichotomic measurements. The extensions to arbitrary dimensional
systems have been proposed [1–3]. Recently, Kaszlikowski et al [2] considered joint
probabilities of two distant measurements and suggested how to compare the strength of
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nonlocality between different dimensional systems for different numbers of measurement
outcomes. A maximally entangled pure system violates Bell’s inequality but as enough white
noise is added the system loses its nonlocality. Kaszlikowski et al proposed the fraction
of white noise as a measure of nonlocality, which may be used for its cross-dimensional
comparison. Their numerical analysis for a maximally entangled state showed that the degree
of violation increases monotonically with respect to the number of outcomes.

More recently, Collins et al [3] developed a family of Bell’s inequalities for an arbitrary
finite number of measurement outcomes. The family of inequalities are in good agreement
with Kaszlikowski et al’s results in terms of their measure of nonlocality. These studies
would imply that the critical fraction of white noise is a useful measure in comparing the
amounts of nonlocality for the different dimensional systems. The measure of nonlocality
based on the noise fraction is, on the other hand, criticized by Acin et al [4] as they found that
partially entangled systems can give a larger violation (or stronger resistance to noise) of Bell’s
inequality than the maximally entangled state. The other approach for a substantial violation
of local realism was introduced by van Dam et al [5] and they found that CHSH inequality is
the strongest nonlocality test for a bipartite system in terms of the statistical strength.

In the test of Bell’s inequality, a set of unitary transformations play an important role
in the violation of Bell’s inequality because local measurement settings for each party are
characterized by local unitary transformations. In earlier studies [2–4], the transformations
are restricted to quantum Fourier transformations (QFT). For a d-dimensional system the most
general unitary transformation forms the group SU(d). It is thus questionable whether the QFT
is sufficient to fully reveal quantum nonlocality. It has been known that the QFT is sufficient
for a maximally entangled system of d = 2 and 3 [2]. However, it is still an open question for
other dimensional systems and, more importantly, for an arbitrarily entangled system. This
question is investigated in this paper.

Quantum nonlocality for continuous-variable (CV) systems has been studied in various
contexts. Bell argued that the original Einstein–Podolsky–Rosen (EPR) state [7] would not
violate Bell-like inequalities since it has a positive-definite Wigner function and thus its
correlation function with respect to position and momentum observables can be simulated
by local hidden variables. On the other hand, introducing dichotomic measurements such
as even or odd parities of the photon number and presence or absence of photons, Banaszek
and Wódkiewicz [8, 9] showed the nonlocality of the EPR state. The measurements follow
displacement operations, that is, translations in the phase spaces of the modes. However, the
scheme by Banaszek and Wódkiewicz did not give a maximal violation for the inequality.
This motivated Chen et al [10] to investigate another type of observable, with the unitary
transformations other than the displacement in phase space, which results in the maximal
violation for EPR state. The observable, so-called ‘pseudo-spin’ operator, is defined as tensor
summations of Pauli spin operators, which is an element of an SU(2) group.

The generalization of a dichotomic measurement to an arbitrary finite number of outcomes
for a nonlocality test of a CV state was proposed by Brukner et al [12] as establishing a
correspondence between a CV and a discrete system of an arbitrary finite dimension. However,
in their work, it is not clear whether the correspondence can be given as a physically plausible
map, i.e. a completely positive (CP) map. Moreover, in their analysis for nonlocality, Brukner
et al did not employ general transformations in SU(d) but the simple QFT transformations
in varying the configuration of measurements. Thus, the question of QFT being sufficient to
reveal nonlocality arises in CV systems as well as in finite-dimensional systems.

In this paper, we formulate Bell’s inequality in terms of a linear summation of correlation
functions which utilize the most general projective d-outcome measurements. For the
correlation function, we introduce a general form of correlation observable between two
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d-level systems and find the eigenvalues from the generic conditions that any correlation
function should satisfy. For the observable, we exploit all the possible unitary transformations
in the SU(d) group on the configurations of local d-outcome measurements. The subgroup
algebra of SU(d) allows us to prove that (d2 − d) number of real parameters are sufficient
to describe the local unitary operation. By inspecting symmetries and performing numerical
analysis, we show, while the QFT suffices for a maximally entangled system, a partially
entangled system requires more general transformations in order to fully investigate its
nonlocality.

Bell’s inequalities are applied to a CV state whose infinite-dimensional Hilbert space is
decomposed onto the tensor sum of d-dimensional subspaces. The decomposition maps any
CV state onto an arbitrary finite-dimensional state. We prove that the mapping is linear, trace
preserving, complete positive. After applying the mapping, we investigate the violation of
Bell’s inequality for the two-mode squeezed vacuum state, as an example of a CV state, with the
different outcome measurements. To search for the optimal violation in SU(d) transformation,
several numerical methods are assessed.

2. Bell’s inequalities with d-outcome measurements

In this section, we investigate Bell’s inequalities by considering the SU(d) group of
transformations for the measurement with d outcomes. The series of inequalities may be
derived by introducing ‘classically correlated observables’ which can be constructed by local
measurements and classical communications.

2.1. Special unitary transformation for the d-outcome measurement

A measurement of a system is represented by a Hermitian operator which is called an
observable. Any Hermitian operator on a d-dimensional Hilbert space Hd can be expanded
by the identity operator and the group generators of SU(d) algebra. Such a typical description
in terms of group generators was introduced by Hioe and Eberly [14]. In order to obtain the
generators of the SU(d) group, one may introduce transition-projection operators

P̂ jk = |j 〉〈k|, (1)

where {|j 〉} is an orthonormal basis set on Hd . Now, the (d2 − 1) Hermitian operators are
constructed as

ûjk = P̂jk + P̂kj (2)

v̂jk = i(P̂jk − P̂kj ) (3)

ŵl = −
√

2

l(l + 1)

(
l∑

i=1

P̂ii − lP̂l+1l+1

)
, (4)

where 1 � l � d −1 and 1 � j < k � d. It is easy to check that when d = 2 these generators
are Pauli spin operators.

The set of G = {û12, û13, . . . , v̂12, v̂13, . . . , ŵ1, . . . , ŵd−1} is composed of generators
for SU(d) group, fulfilling the relations of tracelessness Tr(ŝj ) = 0 and orthogonality
Tr(ŝi ŝj ) = 2δij for ŝi , ŝj ∈ G. The elements ŝi ∈ G hold the algebraic relation,

[ŝj , ŝk] = 2i
∑

l

fjkl ŝl , (5)

where fjkl is the antisymmetric structure constant of the SU(d) algebra.
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The set G can be divided into the three mutually exclusive subsets of operators:
U = {ûjk}, V = {v̂jk} and W = {ŵl}, which contain d(d − 1)/2, d(d − 1)/2 and (d − 1)

elements respectively. The operators in each subset satisfy the algebraic relations

[ûij , ûkl] = −i{δjl(1 − δik)v̂ik + δik(1 − δjl)v̂j l + δjk(1 − δil)v̂il − δil(1 − δkj )v̂kj },
[v̂ij , v̂kl] = −i{δjl(1 − δik)v̂ik + δik(1 − δjl)v̂j l − δjk(1 − δil)v̂il + δil(1 − δkj )v̂kj }, (6)

[ŵi, ŵj ] = 0.

The commutators between the elements from U or V result in the operators in the subset
V while any elements in W commute to each other. The commutation relations among the
operators from the different subsets can be found as

[ûij , ŵl] = −(xil − xjl)v̂ij

[v̂ij , ŵl] = −i(xil − xjl)ûij (7)

[ûij , v̂kl] = i(δjkûil + δikûj l − δjl ûik − δil ûkj ) + 2iδikδjl(|j 〉〈j | − |i〉〈i|),
where the coefficient xil is given by

xil = −
√

2

l(l + 1)

(
l∑

k=1

δik − lδil+1

)
(8)

and δ is the Kronecker delta function. As a summary, one may symbolically express the
commutation relation among the subsets U,V and W as

[U,U ] ∝ V, [V, V ] ∝ V, [W,W ] ∝ 0

[U,W ] ∝ V, [V,W ] ∝ U, [U,V ] ∝ U + W.
(9)

Using the SU(d) group generators, any Hermitian operator on the d-dimensional Hilbert
space is represented by

�̂(�a) = a0

d
1̂1 +

1

2

d2−1∑
j=1

aj ŝj , (10)

where a0 = Tr �̂(�a) and aj = Tr ŝj �̂(�a) are real numbers due to the hermiticity condition
of the observable �̂(�a). The coefficient aj comprises a (d2 − 1)-dimensional vector
�a = (a1, . . . , ad2−1) which we call a generalized Bloch vector, while a0 is constant over
any SU(d) transformations.

In the Heisenberg picture, the unitary transformation Û of the Hermitian operator,

�̂(�a) → �̂(�a′) = Û�̂(�a)Û †, (11)

can also be described as a transformation of the generalized Bloch vector �a. Decomposing
�̂(�a′) in the form (10) with coefficients a′

j and using the invariance of the trace under cyclic
permutation, the components a′

j of the transformed generalized Bloch vector are found to be

a′
j = Tr(ŝj �̂(�a′)) = Tr(Û †ŝj Û �̂(�a)). (12)

Since Û †ŝj Û is also Hermitian and traceless, it can be expanded in terms of the SU(d)
generators as

Û †ŝj Û ≡
∑

k

Tjkŝk, (13)

where Tjk = 1
2 Tr(Û †ŝj Û ŝk) is an element of a (d2 − 1) × (d2 − 1) real matrix. The matrix T

represents the direct relation between the transformed and untransformed generalized Bloch



d-outcome measurement for a nonlocality test 11901

vectors a′
k = ∑

j Tjkaj . As the norm of the generalized Bloch vector remains constant under
the transformation, the real matrix T is orthogonal.

An operator Û in SU(d) can be represented in terms of the group generators �s =
(ŝ1, ŝ2, . . . , ŝd2−1) as

Û (�p) = exp(−i�p · �s), (14)

where �p is a (d2 − 1)-dimensional parameter vector. The parametrization in equation (14) is
said to be canonical. Experimentally, for the optical device, it is possible to realize the discrete
unitary operation in SU(d) using biased multiport beam splitters [15]. In order to derive the
explicit matrix elements of T in equation (13) corresponding to the unitary operator Û (�p), one
may consider a set of differential equations for the generators:

∂

∂t
ŝj (t) = Û †(t �p)

{
i
∑

k

pk[ŝk, ŝj ]

}
Û (t �p)

=
∑

l

(
−2

∑
k

pkfkjl

)
ŝl(t), (15)

where ŝj (t) = Û †(t �p)ŝj Û (t �p). After solving the differential equation and setting t = 1, the
matrix T is derived in terms of the parameter vector �p and the antisymmetric structure constant
fkjl as

T (�p) = exp(−2F(�p)), where Fjl(�p) =
∑

k

pkfkjl . (16)

The antisymmetric characteristics of the structure constant fkjl are related with the
orthogonality of T as T T T = T T T = 11d2−1 where 11d2−1 is an identity matrix on (d2 − 1)-
dimensional vector space.

It is notable that a commutation relation appears in equation (15). From the fact that
the group generators {ŝj } are divided into three subsets U,V and W and the generators of
each subset satisfy the algebraic relations (6) and (7), one can find some symmetries for the
rotation of generators. In particular, since [ŵi, ŵj ] = 0, it is possible to find that the rotation
of generators {ŵl} ∈ W along the direction of any ŵj results in the generator itself as

exp(−ipwj
ŵj )ŵl exp(ipwj

ŵj ) = ŵl, (17)

where pwj
is the ŵj component of the parameter vector appeared in equation (14).

Equation (17) implies that the dimensionality of the nontrivial parameter vector �p for the
unitary transformation of the Hermitian operator (11) can be reduced to (d2 − d). Without
loss of generality, the Hermitian operator (10) can be written with a given orthogonal basis
{|j 〉} and the unitary operator of the basis transformation as

�̂(�a) = Û (�pa)

d∑
j=1

�j |j 〉〈j |Û †(�pa), (18)

where �j is the nondegenerate eigenvalue. The generators in the subset W are sufficient to
reconstruct all the diagonal bases {|j 〉〈j |}, that is,

|j 〉〈j | = 1

d
1̂1 −

d−j∑
k=0

g
j

k ŵj−1+k, (19)

where ĝ
j

k = (1 − jδk0)
√

1
2(j+k)(j+k−1)

. With the help of equations (17) and (19), one can see

that the dimensionality of the nontrivial parameter vector �pa in equation (18) is (d2 − d).
This implies that any unitary transformation in SU(d) for the observable in the d-dimensional
Hilbert space is sufficient with (d2 − d) number of real parameters.
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2.2. Classically correlated observable with d-outcome measurement

Two observers, say Alice and Bob, perform local measurements on their own d-level systems
and they communicate their outcomes via a classical channel. A classically correlated
observable is thus constructed as assigning a weight µi,j for the pair of outcomes, i
and j :

Ê =
d∑

i,j=1

µi,j |i〉a〈i| ⊗ |j 〉b〈j |. (20)

The correlation coefficient matrix µ is a d ×d real matrix. It is notable that equation (20) is the
most general form of a correlation measure between any two d-level systems. The correlation
observable Ê involves d2 correlation coefficients. We show that without loss of generality, the
number of independent parameters reduces to d and we determine their values.

We require that a correlation observable should satisfy the following conditions:

C.1. A correlation function should be indifferent to local polarization, which means that

Tr Êρ̂A ⊗ 11B = Tr Ê11A ⊗ ρ̂B = 0, (21)

where ρ̂A,B = TrB,A ρ̂ are the reduced density operators. This raises the following
condition: ∑

j

µi,j = 0,∀ i and
∑

i

µi,j = 0,∀ j. (22)

For the case of two outcomes, there is the well accepted correlation matrix µ =
{{µ1,1, µ1,2}, {µ2,1, µ2,2}} = {{1,−1}, {−1, 1}}. Here, the translational symmetry,
µ1,1 = µ2,2 and µ12 = µ21, and equal spacing, µ1,1 − µ2,1 = 2 leads the correlation
observable to optimize the measure of correlation. We generalize these in the following
two conditions.

C.2. The correlation coefficients are unbiased over their outcomes (translational symmetry
within modulo d):

µi+k,j+k = µi,j , ∀ k. (23)

C.3. The coefficients are equally separated and normalized (maximal discrimination):

µi,j − µi+1,j = 2

d − 1
, for i � j. (24)

The condition C.2 leads the correlation matrix µ to be in the form of

µ =




µ1 µ2 µ3 · · · µd

µd µ1 µ2 · · · µd−1

...
...

...
. . .

...

µ2 µ3 µ4 · · · µ1


 (25)

and further the condition C.1 implies that∑
l

µl = 0. (26)

The condition C.3 determines all the µl such that µ1 = 1 for a maximally correlated state,
µd = −1 for a maximally anti-correlated state and the other µl are assigned to have equally
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spaced values between 1 and −1. Thus, the three conditions C.1, C.2 and C.3 uniquely
determine the correlation matrix µ,

µi,j = 1 − 2
(i − j) mod d

d − 1
. (27)

Using equation (19), the correlation observable Ê in equation (20) can be written in terms
of the SU(d) generators as

Ê =
d−1∑
k,l=1

µ̃k,lŵk ⊗ ŵl, (28)

where µ̃k,l is the transformed correlation matrix from µj,k . That is,

µ̃k,l =
k+1∑
i=1

l+1∑
j=1

gi
k−i+1g

j

l−j+1µi,j , (29)

where gi
k is given in equation (19). Note that the correlation observable Ê in equation (28) does

not contain any local identity operator 11d due to the condition C.1. Further, the observable
transformed by local unitary operations is written as

Ê(�p, �q) = Û (�p) ⊗ Û (�q)ÊÛ †(�p) ⊗ Û †(�q)

=
d2−1∑
l,m=1

µ̃l,m(�p, �q)ŝl ⊗ ŝm,
(30)

where µ̃(�p, �q) = T T (�p)µ̃T (�q). The unitary operators Û (�p) and Û (�q) determine the
measurement configuration for each side. Without any constraint for the d-outcome
measurement, the unitary operators are subjected to the SU(d) group.

2.3. Bell’s inequalities for a bipartite d-dimensional system

In order to investigate nonlocality of a bipartite system, we introduce a Bell function which
can be constructed by a linear combination of correlation functions of two parties. The Bell
function can be written without loss of generality as

B =
∑

i

ciE(�pi, �qi), (31)

where the correlation function E(�p, �q) = Tr Ê(�p, �q)ρ̂ and �c = {ci} is an arbitrary vector
which satisfies a normalized condition

∑
i ci = 2 to make the Bell function B a polytope [16].

Note that the correlation function E(�p, �q) ∈ [−1, 1] for all �p and �q. The classically correlated
observable Ê(�p, �q) can be written as

Ê(�p, �q) =
∑
i,j

µi,j P̂ i(�p) ⊗ P̂ j (�q), (32)

where the projector P̂ i(�p) = Û (�p)|i〉〈i|Û †(�p) is for the ith outcome with the measurement
configuration �p and the correlation matrix µ is given in equation (27). The joint probability
that Alice and Bob obtain the outcomes i and j with the measurement configurations �p and �q
is given by

Pij (�p, �q) = Tr(P̂ i(�p) ⊗ P̂ j (�q)ρ̂). (33)

This implies that, from the joint probabilities for a given measurement, one can obtain the
correlation functions for different measurement configurations and thus the Bell function (31).
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A Bell function has its boundary which is allowed by a local realistic model. It is worth
mentioning that quantum mechanically correlated states do not violate the boundaries of all
the possible Bell functions (31). Only the Bell functions whose boundaries are violated by
quantum mechanically correlated states are of interest in the test of nonlocality [17]. In this
paper, we do not try to find all the classical boundaries. Instead, we consider the Bell function
whose classical upper bound is 2 with the particular vector �c = (1, 1, 1,−1),

B = E( �A1, �B1) + E( �A2, �B2) + E( �B2, �A1) − E( �A2, �B1). (34)

After a little algebra, one realizes that the Bell function (34) is exactly the same as the Bell
function of Collins–Gisin–Linden–Massar–Popescu (CGLMP) [3], whose classical bounds
are found as 2 with help of joint probabilities.

Note that the third term of the correlation function in equation (34) has the parameters
for the measurement configurations exchanged. In general, the correlation function E(�p, �q)

depends on exchanging the parameter vectors,

E(�p, �q) �= E(�q, �p). (35)

The correlation function is invariant for the parameter exchange only for dichotomic
measurements in which case the Bell function (34) leads to the CHSH Bell’s inequality
[18].

In order to find the quantum mechanical maximum for the Bell function, equation (34),
CGLMP used the QFT unitary transformation,

ÛQFT( �A) = 1√
d

∑
j,k

ei 2π
d

j (k+φA)|j 〉〈k|, (36)

which has only a single parameter φA to be adjusted for the measurement configuration. They
found that for the d-dimensional maximally entangled state their Bell function, which is the
same as equation (34), has its maximum

Bd = 4d

d−1∑
l=0

(
1 − 2l

d − 1

)
1

2d3 sin2[π(l + 1/4)/d]
(37)

when (φA1, φA2 , φB1 , φB2) = (0, 1/2, 1/4,−1/4). This is always larger than the local realistic
upper bound 2 and increases as the number, d, of measurement outcomes increases. However,
as a special subset of the unitary group U(d), it is unclear whether the QFT measurement is
optimal for the test of nonlocality when d > 3 even though it has been known that this is the
case for maximally entangled states of d = 2 and d = 3 [2].

The raised question becomes rather dramatic if a state is partially entangled. For example,
when d = 2, the violation of Bell’s inequality in equation (31) is plotted in figure 1. Note
that Bell’s inequality becomes the CHSH Bell’s inequality when d = 2. The state is assumed
to be in a pure state of |ψ〉 = cos ϕ|00〉 + sin ϕ|11〉. The Bell functions are optimized for
the different measurement configurations: the dashed line is obtained by the QFT and the
solid line by the SU(2) transformations. The figure shows that the QFT is not an optimal
transformation in revealing the nonlocality of the partially entangled state. It is required to
consider the general SU(d) transformations for the optimal nonlocality test when a state is in
a partially entangled state.

3. Highly degenerate measurement for a CV state

In this section, we consider a CV state as a system to test its nonlocality. For the purpose
of the nonlocality test, one needs to introduce a proper measurement which can show the
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0.0
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2.0
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SU(2)
Local realism

QFT

ε

B

Figure 1. Bell function B with respect to the entanglement ε = √
2 sin ϕ for a two-dimensional

bipartite state. Solid line represents for the case of SU(2) measurement and dashed line for the
measurement with QFT.

violation of any Bell’s inequality. Generally, for the case of a CV state, the spectrum of its
measurement is continuous and the number of nondegenerate eigenvalues is infinite. Therefore,
a difficulty arises, even in principle, in measuring the infinite number of outcomes and the test
of its nonlocality. Several possible methods which can overcome such a difficulty have been
suggested [8, 10, 12]. These methods have adopted measurements which give a finite number
of outcomes from a CV state. This measurement naturally assumes an infinite degeneracy in
the measurement. Recently, it is also found that homodyne measurement after single photon
subtraction from a CV state can play an essential role for a loophole-free nonlocality test [19].

In this section, we formulate the explicit form of an observable Â which can give a finite
d-number of outcomes from the measurement on a CV system. The observable corresponds
to a mapping from a CV state to an arbitrary d-dimensional system and the mapping is the
same mapping which was suggested by Brukner et al [12]. We show, here, that the mapping
is a linear, trace preserving and complete positive (CP) map which implies that the density
matrix of a CV state can be legitimately transformed into a finite-dimensional state.

3.1. d-outcome measurement for a CV system

An observable Â(�a) which gives d outcomes from the measurement on a CV state can be
found as a direct sum of the infinite number of the d-dimensional observables;

Â(�a) =




�̂(�a) 0 0 · · ·
0 �̂(�a) 0 · · ·
0 0 �̂(�a) · · ·
...

...
...

. . .


 , (38)

where �̂(�a) is the observable which is in the d-dimensional Hilbert space and has the explicit
form as was given in equation (10). The measurement with the observable Â(�a) produces
infinite degeneracy in each outcome since it counts every d modulo basis state as the same
outcome. Alternatively, the observable Â(�a) can be written as

Â(�a) =
∞∑

m=0

d−1∑
jk=0

�jk(�a)|dm + j 〉〈dm + k|, (39)
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where �jk(�a) is the matrix element of the d-dimensional observable which is parametrized
with the d2 − 1 dimensional generalized Bloch vector �a.

With the observable Â(�a), one can establish the mapping between a CV state and an
arbitrary finite-dimensional state for the CV state. It exploits the fact [12] that, from the
physical perspective, any two systems can be considered as equivalent, if the probabilities for
outcomes of all possible future experiments performed on one and on the other are the same.
Mathematically, the requirement can be expressed as

Tr(Â(�a)ρ̂) = Tr(�̂(�a)ρ̂d), (40)

where ρ̂ is the density matrix of any CV state while ρ̂d is that of a d-dimensional state.
Moreover, it is important to clarify that the mapping is a physically possible quantum

process. One can show that the observable Â(�a) on a CV state results in a trace preserving,
linear, CP map ε as

ρ̂ → ρ̂d = ε(ρ̂), (41)

where ρ̂ ∈ B(H) and ρ̂d ∈ B(K). We denote that B(H) is the set of operators defined in
H. Also note that H and K are the infinite and d-dimensional Hilbert spaces, respectively.
In order to prove it, it is possible to make use of the correspondence between the complete
positive maps and positive-semidefinite operators [20]. The density matrix in B(K) can be
expressed by the transformation ε as follows:

ρ̂d = TrH(11K ⊗ ρ̂T R̂ε), (42)

where R̂ε is a positive-semidefinite operator defined in B(K ⊗ H). The positive-semidefinite
operator has the explicit form as

R̂ε =
∞∑

n=0

d−1∑
kl=0

|k〉〈l| ⊗ |dn + k〉〈dn + l| (43)

which satisfies the trace preserving properties of the CP map by TrK(R̂ε) = 11H. The
correspondence between the CP map and the observable Â(�a) is confirmed from the dual map
ε∨ of the map ε [21] on the observable �̂(�a) and it is

ε∨(�̂(�a)) ≡ TrK
(
�̂(�a) ⊗ 11HR̂TH

ε

)
= Â(�a),

(44)

where TH denotes partial transposition on the Hilbert space H only. We conclude that the
measurement with the observable Â(�a) on a CV state is equivalent to consider the state as a
d-dimensional state, which is mapped from the CV state, with the measurement of �̂(�a). It
can also be said that the mapping is a linear, trace preserving CP map from equation (42).

3.2. Mapping of a multi-mode state

The mapping B(HA ⊗HB) → B(K1 ⊗K2) for a two-mode CV density matrix onto a bipartite
d-dimensional state is possible as

ρ̂12 = TrAB

(
11K ⊗ 11K ⊗ ρ̂T

ABR̂A1R̂B2
)
. (45)

The mapping for an arbitrary number of modes can also be found as an extension of
equation (45).

As an example, we consider a two-mode squeezed state |ψ〉 which can be generated by a
nondegenerate optical parametric amplifier [22],

|ψ〉 =
∞∑

n=0

(tanh r)n

cosh r
|n, n〉A,B, (46)
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where |n〉 is a Fock state and r is the squeezing parameter. It is well known that when squeezing
parameter r goes to infinity, the two-mode squeezed state approaches to the EPR state [7].
From equation (45), one can map the two-mode squeezed state onto the d-dimensional pure
state:

|ψd〉 = sech r√
1 − tanh2d r

d−1∑
n=0

(tanh r)n|n, n〉A,B. (47)

The mapped state is a partially entangled pure state whose entanglement is characterized by
the squeezing parameter r. The state becomes separable only when r = 0 and it becomes
maximally entangled for the limit of r → ∞.

4. Numerical analysis based on SU(d) group

We investigate the optimal violation of Bell’s inequality based on the Bell function Bd in
equation (34) for the two-mode squeezed state. In order to search for optimization values of the
inequalities, we employ several numerical methods such as steepest descent, conjugate gradient
and dynamic relaxation. Each method has its own advantages and disadvantages depending
on the situations for optimization. The conjugate gradient leads to rapid convergence for a
nearly hyperbolic function (where a bounded function looks like near its minimum). The
steepest descent method enables one to find persistently lower values, even though it has
disadvantages of slow convergence for the nearly hyperbolic function that is squeezed in
parameter space. The dynamic relaxation method is between the two methods. We consider
the dynamic relaxation method in detail as the algorithms and implementations of the other
methods can easily be found in literatures [23].

The dynamic relaxation method simulates a physical system under a potential and a
friction, which resembles the Car–Parrinelo method for ab initio molecular dynamics [24].
Consider a bounded function B({pi}) in terms of the parameter vector pi . For an optimization
the method simulates a dynamic equation for a fictitious classical particle, by regarding pi

as its trajectory vector and B({pi}) as a potential. The dynamic equation of motion can be
written as

m
d2

dt2
pi(t) = −γ

d

dt
pi(t) − ∂

∂pi

B({pj }; t), (48)

where m is a mass of the fictitious particle and γ is a friction ratio. Note that the equation is a
kind of the Langevin equation. The particle will relax to the minimum of the potential. The
solution to equation (48) approaches to the minimum of the function B({pi}) exponentially due
to the friction γ . A minimum is claimed to be achieved when |∂pi

B({pj })|× |pi | � 10−6. For
the numerical implementation, a Runge–Kutta method is used to solve the dynamic equation
with the following ranges of parameters: m = 0.1, γ ∈ (0.5, 1.5) and δt ∈ (0.01, 0.1). The
maximum value of B({pi}) is obtained by replacing the ‘potential’ B({pi}) with −B({pi}).
For the optimizations of Bell functions in equation (34), the parameter vector is given by
�a = ( �A1, �A2, �B1, �B2) where �Ai and �Bi are parameter vectors for unitary transformations
Û ( �Ai) and Û ( �Bi), respectively, in the group SU(d).

We optimize the value of the Bell function Bd in equation (34) with SU(d) transformations
for the two-mode squeezed state. All the results are checked and they are reproduced by
conjugate gradient, steepest descent and dynamic relaxation methods. Figure 2 presents the
optimized value of the Bell functions Bd with respect to the strength of squeezing tanh(r)

for different numbers of measurement outcomes. The Bell function is upper bounded by 2,
Bd � 2, under the local realistic theory.
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Figure 2. Violation of Bell’s inequality based on the Bell function Bd for a two-mode squeezed
state. Finite number of measurement outcomes are considered.

Table 1. The largest optimum values, Bd(rm), of the Bell function for a two-mode squeezed
state. rm is the squeezing parameter which maximized the value of Bd for the given number, d, of
measurement outcome. Bd(∞) is the value of Bd for an infinite squeezing.

d rm Bd(rm) Bd(∞)

2 ∞ 2.828 43 2.828 43
3 1.407 2.906 38 2.872 93
4 1.373 2.960 95 2.896 24
5 1.393 3.001 87 2.910 55

In figure 2, we note that a two-mode squeezed state always violates the inequality Bd � 2
for all r > 0 regardless of the number of measurement outcomes. Brukner et al calculated
the values of the Bell function Bd for d = 3 based on the QFT for a two-mode squeezed
state. They do not always achieve Bd > 2 for the squeezing parameter r > 0 even though a
two-mode squeezed state is inseparable. Thus in order to properly achieve the optimum value
of the Bell function, we have to consider all the possible transformations in SU(d).

On the other hand, in the limit of r → ∞, a two-mode squeezed state becomes a
regularized EPR state which is mapped onto a maximally entangled state in finite-dimensional
Hilbert space. However, for the maximally entangled state, the QFT suffices to obtain the
optimum value of Bd as we have already discussed.

For a given number of measurement outcomes, the amount of violation increases and
decreases with respect to the squeezing parameter r. Let rd denote the value of squeezing
parameter that gives the largest violation for a given measurement with d number of outcomes.
As shown in table 1, except for the dichotomic measurement, the infinitely squeezed state
violates the inequality less than some partially entangled states. As one increases the number of
outcomes, the largest optimum values of Bd monotonically increase. It is also found in figure 2
that for the high squeezing regime the higher number of outcomes gives stronger violation
while the result is reversed for the small squeezing regime.
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5. Final remarks

We studied the most general d-outcome measurement for Bell’s inequalities of a bipartite
system. In order to construct the inequalities, we introduced a classically correlated observable
which is constructed in terms of local measurements and classical communications. For the
configuration of the local measurements, we considered general transformations in SU(d). It
was found that the number of parameters for the nontrivial operation is reduced to (d2 − d).
After inspection of symmetries, we derived the Bell function that is composed of the correlation
functions. This Bell function is equivalent to that found by Collins–Gisin–Linden–Massar–
Popescu [3]. The present numerical analysis shows that, when the system is in a maximally
entangled state, the QFT is an optimal transformation for each local measurement. However,
we show that this does not hold when the system is in a partially entangled state.

In order to utilize the CV state for the nonlocality test, we investigated the mapping
between a CV state and an arbitrary dimensional system which was devised by Brukner et al
[12]. We found the mapping is a linear, trace preserving and complete positive map and it
corresponds to a highly degenerate d-outcome measurement on a CV state. By applying the
highly degenerate measurements, we investigated the optimal violation of Bell’s inequality
for the two-mode squeezed state. Regardless of the degree of squeezing and the number
of outcomes, the two-mode squeezed state always violates Bell’s inequalities. This opens
a possibility of extending Gisin’s theorem [13], which states that a pure entangled bipartite
system always shows nonlocality not only for the case of dichotomic measurement but also
for the case of a measurement with an arbitrary number of measurement outcomes.
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